A Flow Cytometry-Based Screen of Nuclear Envelope Transmembrane Proteins Identifies NET4/Tmem53 as Involved in Stress-Dependent Cell Cycle Withdrawal
نویسندگان
چکیده
Disruption of cell cycle regulation is one mechanism proposed for how nuclear envelope protein mutation can cause disease. Thus far only a few nuclear envelope proteins have been tested/found to affect cell cycle progression: to identify others, 39 novel nuclear envelope transmembrane proteins were screened for their ability to alter flow cytometry cell cycle/DNA content profiles when exogenously expressed. Eight had notable effects with seven increasing and one decreasing the 4N:2N ratio. We subsequently focused on NET4/Tmem53 that lost its effects in p53(-/-) cells and retinoblastoma protein-deficient cells. NET4/TMEM53 knockdown by siRNA altered flow cytometry cell cycle/DNA content profiles in a similar way as overexpression. NET4/TMEM53 knockdown did not affect total retinoblastoma protein levels, unlike nuclear envelope-associated proteins Lamin A and LAP2α. However, a decrease in phosphorylated retinoblastoma protein was observed along with a doubling of p53 levels and a 7-fold increase in p21. Consequently cells withdrew from the cell cycle, which was confirmed in MRC5 cells by a drop in the percentage of cells expressing Ki-67 antigen and an increase in the number of cells stained for ß-galactosidase. The ß-galactosidase upregulation suggests that cells become prematurely senescent. Finally, the changes in retinoblastoma protein, p53, and p21 resulting from loss of NET4/Tmem53 were dependent upon active p38 MAP kinase. The finding that roughly a fifth of nuclear envelope transmembrane proteins screened yielded alterations in flow cytometry cell cycle/DNA content profiles suggests a much greater influence of the nuclear envelope on the cell cycle than is widely held.
منابع مشابه
The cell cycle dependent mislocalisation of emerin may contribute to the Emery-Dreifuss muscular dystrophy phenotype.
Emerin is the nuclear membrane protein defective in X-linked Emery-Dreifuss muscular dystrophy (X-EDMD). The majority of X-EDMD patients have no detectable emerin. However, there are cases that produce mutant forms of emerin, which can be used to study its function. Our previous studies have shown that the emerin mutants S54F, P183T, P183H, Del95-99, Del236-241 (identified in X-EDMD patients) a...
متن کاملUNcleProt (Universal Nuclear Protein database of barley): The first nuclear protein database that distinguishes proteins from different phases of the cell cycle
Proteins are the most abundant component of the cell nucleus, where they perform a plethora of functions, including the assembly of long DNA molecules into condensed chromatin, DNA replication and repair, regulation of gene expression, synthesis of RNA molecules and their modification. Proteins are important components of nuclear bodies and are involved in the maintenance of the nuclear archite...
متن کاملNuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer
BACKGROUND Despite our substantial understanding of molecular mechanisms and gene mutations involved in cancer, the technical approaches for diagnosis and prognosis of cancer are limited. In routine clinical diagnosis of cancer, the procedure is very basic: nuclear morphology is used as a common assessment of the degree of malignancy, and hence acts as a prognostic and predictive indicator of t...
متن کاملTargeting proteins to the plant nuclear envelope.
The nuclear envelope and the nuclear pore are important structures that both separate and selectively connect the nucleoplasm and the cytoplasm. The requirements for specific targeting of proteins to the plant nuclear envelope and nuclear pore are poorly understood. How are transmembrane-domain proteins sorted to the nuclear envelope and nuclear pore membranes? What protein-protein interactions...
متن کاملGenome-wide nuclear morphology screen identifies novel genes involved in nuclear architecture and gene-silencing in Saccharomyces cerevisiae.
Organisation of the cell nucleus is crucial for the regulation of gene expression but little is known about how nuclei are structured. To address this issue, we designed a genomic screen to identify factors involved in nuclear architecture in Saccharomyces cerevisiae. This screen is based on microscopic monitoring of nuclear pore complexes and nucleolar proteins fused with the green fluorescent...
متن کامل